Integrated Urban Electric Mobility Solutions in the Context of the Paris Agreement, the Sustainable Development Goals and the New Urban Agenda

InCo flagship project on “Urban mobility and sustainable electrification in large urban areas in developing and emerging economies”
Electrifying feeder bajajs to the BRT

Feasibility Assessment Report

Dar es Salaam, 21.05.22

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 875041. The sole responsibility for the content of this website lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the INEA nor the European Commission are responsible for any use that may be made of the information contained therein.
Feasibility Assessment report

Part I: Data collection with ICE feeder bajajs
- Organisational, financial & spatial patterns
- Typical mileage
- Vehicle types
- Passenger volumes
- Parking patterns
- Transfer

Part II: Environment assessment for e-bajajs
- Regulatory environment
- Fiscal environment
- Market environment

⇒ Recommendations for the e-bajaj pilot
Six feeder waiting points surveyed

Multi-criteria analysis to select six high-priority corridors and waiting points to conduct the surveys:

- existing bajaj demand
- connectivity to BRT
- road condition
- terrain
Methods

1. Survey of bajaj drivers
2. Focus groups
3. GPS tracking of ICE bajajs
4. Boarding and alighting survey
5. Frequency occupancy survey
6. Transfer survey
7. Field observations
Collecting essential information about drivers

- 100% of surveyed Bajaj drivers were men
- 49% of drivers have a secondary education level
- 95% of drivers have a TVS King Bajaj
- 67% of drivers have completed or are still using a lease-to-own scheme
- 6% of vehicles are produced in the last 6 years
- 30% of drivers have a primary education level
- 10% of drivers bought the vehicle upfront
- 18% of drivers rent the vehicle (no final transfer of ownership)
- 6% of drivers have completed the scheme
- 45% are still using the scheme
- 62% of drivers are 25 to 34 years old
Learnings: drivers’ needs

- Integrating the views and preferences of bajaj drivers and their associations is essential to ensure a just and efficient transition.

- In particular, the pilot needs to consider three key needs identified by the drivers:
 - sufficient range
 - vehicle robustness
 - availability of spare parts.

- Drivers and their waiting point associations should be tightly involved in the transition, as done throughout the surveys and focus groups.
Learnings: daily mileage

-Surveyed drivers want electric bajajs to allow them to operate with a similar mileage compared to ICE vehicles.

- The average daily mileage with ICE bajajs in the areas studied is found to be 120 km.

- The e-bajaj specifications and the charging strategy should be designed to allow a similar daily mileage while limiting disruption of operational patterns and costs.

- **Two options**: battery charging overnight completed by limited top-up during the day, or battery swapping.
Learnings: identified opportunities

• Fuel costs represent nearly half of their daily costs; shifting to e-bajajs can represent an economic opportunity.

• There is strong interest in shifting to e-bajajs, which is positive for the pilot.
Learnings: integrating patterns & preference to the pilot design

- Considering night parking patterns are critical to ensure feasibility, as well as access to electricity and reliability.

- Integrating desired ownership patterns is essential.
And many other learnings

ICE bajajs

- Mostly three-seaters
- Transfer mostly between bajaj-dala dala, bajaj-BRT, or or bajaj only
- Highest demand on the Kimara Korogwe-Maji Chumvi route; strongest BRT connection at Kimara Korogwe

Areas for pilot deployment

- 8 criteria screened: existing demand, BRT connectivity, organisation of the waiting point, road condition of the waiting point, available space for charging, interest of the drivers in an e-mobility pilot, topography of the corridor, road conditions of the corridor
- Decision to focus on two best-ranking locations: Kimara Korogwe-Maji Chumvi and Njia Panda ya Chuo-Changanyikeni

Barriers identification

- Clarification of tax and regulatory environment
- Integrated in the Barriers Report
Emilie Martin
Regional coordinator SOLUTIONSplus
Urban Living Lab Center, Wuppertal Institute (WI)

Dorica Mugusi
Transport Planning Associate
ITDP Africa

Fanuel Kalugendo
Director of Transportation Development
Dar Rapid Transit Agency - DART

Delfina Rweleza
Senior Town Planner
Dar Rapid Transit Agency - DART

Eng. Shauri
Transport Planning Associate
ITDP Africa

Annika Berlin
Programme Management Officer
UNEP

Jacqueline Senyagwa
City coordinator SOLUTIONSplus
Urban Electric Mobility Initiative (UEMI)

Mirko Goletz
Team Leader
German Aerospace Center (DLR)

Judith Owigar
Associate Smart Cities Expert
UN-Habitat

and many others